Открыто

Углубленный курс по текстам (Natural Language Processing) [2020] [Университет Искусственного Интеллекта] [Константин Слепов]

Тема в разделе "Курсы по программированию", создана пользователем Toxich, 11 май 2020.

Цена: 44900р.-95%
Взнос: 2206р.

Основной список: 24 участников

Резервный список: 10 участников

  1. 11 май 2020
    #1
    Toxich
    Toxich ЧКЧлен клуба
    Углубленный курс по текстам (Natural Language Processing)
    Константин Слепов


    Этот курс для тех, кто уже знаком с устройством и принципом работы нейросетей и хочет специализироваться на работе с естественным языком.

    Чему Вы научитесь:
    1. Пройдя курс, вы сможете решать широкий спектр задач, начиная от классификации текста, заканчивая NER и переводом предложений
    2. В каждом занятии будет рассказываться продвинутая теория, чтобы вы могли свободно изменять архитектуру и стратегию решения задачи, если она значительно отличается от типовой
    3. Также в курсе будут даваться полезные практические советы, которые, если разбираться самому, приходят с опытом лишь через длительное время и после множества экспериментов

    1. Введение в рекуррентные сети

    Содержание занятия: Введение в программу курса. Повторение основ рекуррентных сетей: предпосылки к созданию, преимущества над полносвязными сетями, базовый алгоритм работы.
    Работа с переносом обучения в рекуррентных сетях. Рассмотрение популярных предобученных моделей для анализа текстов. Мини-проект: обнаружение факта сравнения машины с другими марками в отзывах.
    2. Embeddings и языковые модели

    Содержание занятия: Знакомство с векторной абстракцией слов. Рассмотрение математических свойств векторов, которые можно использовать при работе с embeddings. Вывод CosineDistanceLoss.
    Разбор word2vec, fasttest, glove. Сравнение языковых моделей и предобученных embeddings в переносе обучения. Мини-проект: извлечение хэштегов из текста комментария.
    3. Gensim, pymorphy

    Содержание занятия: Продолжение работы с языковыми моделями. Сбор своей собственной тематической модели с помощью Gensim. Сравнение точности предсказаний нейросети при использовании embeddings, предобученных на разных темах. Разбор методов работы с текстами, написанными на отличном от английского языках. Морфологический анализ текста с помощью pymorphy2 для предобработки текста.
    4. Углубление в рекуррентные сети

    Содержание занятия: Рассмотрение устройства и смысла популярных рекуррентных слоев: LSTM (и модификации), GRU. Сравнение режимов работы рекуррентных нейросетей. Изучение работы моделей на тензорном уровне. Цель занятия - научиться понимать, как движутся данные по рекурретной нейросети в keras, необходимые размерности на входе и выходе в различных режимах работы нейросети, за что отвечает каждая ось во входных и выходных тензорах. Теоретическая часть занятия в будушем позволит многократно ускорить создание проекта со своим датасетом и своей архитектурой. Рассмотрение задачи Named Entity Recognition. Мини-проект: применение NER на мировых новостях.
    5. Свёрточные сети

    Содержание занятия: Разбор второго подхода для анализа текстов- сверточные сети: устройство, почему этот подход работает. Сравнение качества работы моделей на основе CNN и RNN.
    Рассмотрение сверточных нейросетей, созданных изначально для компьютерного зрения, со стороны NLP. Object detection в текстах. Мини-проект: object detection в отзывах по автомобилям.
    6. Seq2Seq

    Содержание занятия: Изучение преобразования последовательность-последовательность. Рассмотрение составных частей seq2seq модели: encoder и decoder. Разбор задач seq2seq и готовых реализаций по этим задачам. Мини-проект: написание своего чат-бота, отвечающего на вопросы.
    7. Преобразование изображений в текст и наоборот

    Содержание занятия: Окончательное стирание грани между изображениями и текстами. Извлечение смысла из изображения и текста с последующим преобразованием: поиск изображения по тексту, создание изображения с помощью генеративной сети со смыслом текста в качестве условия, создание текстового описания по изображению.
    8. Механизм attention

    Содержание занятия: Изучение понятия "внимания" в нейросетях. Разбор принципов работы attention в задачах seq2seq. Сравнение качества работы нейросетей с attention и без. Мини-проект: создание своего переводчика.
    9. Transformers

    Содержание занятия: Разбор усовершенствованного механизма attention под названием transformer. Построение базовой версии трансформера. Изучение структуры и возможностей state-of-art реализаций transformer: BERT, GPT-2, T5. Мини-проект: извлечение краткого сымсла: написание abstract части по научной статье.
    10. Sentence extraction

    Содержание занятия: Разбор поиска предложений с необходимым смыслом в тексте с помощью рекуррентных нейросетей. Мини-проект: выделение предложений в новости, в которых идет речь о заранее определенном человеке.
    11. LeakGan

    Содержание занятия: Изучение научной статьи и написание нейросети по ней с нуля с глубоким разбором теоретической части. Решение задачи генерации текста с помощью GAN. Генерация текста, успешно проходящая тест Тьюринга.
    Разбор ансамбля CNN+RNN нейросетей для решения сложных задач обработки\генерации текста. Кастомизация работы Keras с помощью низкоуровнего кода на TensorFlow 2.0.​

    Продажник
     
  2. Последние события

    1. devopsrule
      devopsrule не участвует.
      28 дек 2024
    2. graphproject
      graphproject участвует.
      11 дек 2024
    3. levert
      levert участвует.
      11 дек 2024
    4. Nizamov102
      Nizamov102 не участвует.
      4 апр 2024
  3. Обсуждение
  4. 14 ноя 2021
    #2
    erfurt_dnepr
    erfurt_dnepr СкладчикСкладчик
    Господа, а чего мы собственно ждем. 39 человек собралось уже