
Reading Sample
This sample chapter explores encapsulation and implementation hiding
techniques, which are used to simplify the way that developers interface
with classes, making object-oriented program designs easier to understand,
maintain, and enhance.

James Wood, Joseph Rupert

Object-Oriented Programming in
ABAP Objects
470 Pages, 2016, $69.95/€69.95
ISBN 978-1-59229-993-5

	 www.sap-press.com/3597

First-hand knowledge.

“Encapsulation and Implementation 	
 Hiding”

Contents

Index

The Authors

 © 2016 by Rheinwerk Publishing, Inc. This reading sample may be distributed free of charge. In no way must the file be altered, or
individual pages be removed. The use for any commercial purpose other than promoting the book is strictly prohibited.

http://sap-press.com/3597

121

Chapter 3

Classes are abstractions that are used to extend the functionality of a pro-
gramming language by introducing user-defined types. Encapsulation and
implementation hiding techniques are used to simplify the way that devel-
opers interface with these user-defined types, making object-oriented pro-
gram designs easier to understand, maintain, and enhance.

3 Encapsulation and Implementation
Hiding

One of the most obvious ways to speed up the software development process is to
leverage pre-existing code. However, while most projects strive to create reusable
source code artifacts, few actually succeed in delivering modules that can be clas-
sified as reusable. In most cases, this lack of (re)usability can be traced back to the
fact that the module(s) become too tightly coupled with their surrounding envi-
ronment. With so many “wires” getting in the way, it’s hard to pick up a module
and drop it in somewhere else. Therefore, in order to improve reusability, we
need to cut the cords and figure out ways of building autonomous components
that can think and act on their own.

In this chapter, we’ll learn how to breathe life into objects by exploring the ben-
efits of combining data and behavior together under one roof. Along the way,
we’ll explore the use of access control mechanisms and see how they can be used
to shape the interfaces of the defining classes to make them easier to modify and
reuse in other contexts.

3.1 Lessons Learned from Procedural Programming

Contrary to popular belief, many core object-oriented programming concepts are
based on similar principles rooted in the procedural programming paradigm. In
both paradigms, the basic goal is to provide developers with the tools they need
to translate requirements from the physical world into software-based solutions.
However, while both programming models share in this goal, they go about

Encapsulation and Implementation Hiding3

122

achieving it in vastly different ways. In this section, we’ll take a closer look at the
procedural approach and consider some of the limitations which ultimately
caused many language designers to move in the direction of an object-oriented
approach.

3.1.1 Decomposing the Functional Decomposition Process

Typically, procedural developers formulate their program designs using a process
called functional decomposition. The term “functional decomposition” is taken
from the world of mathematics, where mathematical functions are broken down
into a series of smaller discrete functions that are easier to understand on their
own. From a development perspective, functional decomposition refers to the
process of decomposing a complex program into a series of smaller modules (e.g.
procedures or subroutines).

One common approach for discovering these procedures is to scan through the
functional requirements and highlight all the verbs used to describe the actions a
program must take to meet its objectives. After all of the steps have been identi-
fied, they are then composed into a main program that’s responsible for making
sure that the procedures are executed in the right sequence. This process of orga-
nizing and refining the main program is sometimes called step-wise refinement.

For small to medium-sized programs, this strategy works pretty well. However, as
programs start to branch out and grow in complexity, the design tends to become
unwieldy as the main program becomes saddled with too many responsibilities.
Here, besides keeping track of all of the different procedures and making sure
that they’re processed in the right order, the main program is also normally
responsible for managing all of the data used by the various procedures. For this
reason, such programs are often referred to as “God programs”.

Note

In his book, Design Patterns Explained: A New Perspective on Object-Oriented Design,
2nd Edition, Alan Shalloway suggests that the term “God program” stems from the fact
that only God can understand these programs.

With functional decomposition, the level of abstraction is the subroutine. Within
a given subroutine definition, we can implement logic to perform a particular
task using data that’s provided from one of two places:

Lessons Learned from Procedural Programming 3.1

123

� Parameters that are passed into the subroutine from the calling program

� Global variables which are visible from within the subroutine

Regardless of the approach we use to supply subroutines with data, the reality is
that there’s no clean way of doing this without introducing some undesirable
dependencies. For example, if we make liberal use of global variables, we open
ourselves up to the possibility of data corruption errors. Here, imagine the
impacts of switching out the call sequence of a pair of subroutines which make
changes to the same global variable(s). If subroutine b depends on subroutine a to
initialize the data and the call sequence gets flipped based on a requirements
change, it’s very likely that we’ll start seeing strange data-related errors in the
processing (see Figure 3.1).

Figure 3.1 Data Collision Errors between Subroutines and Global Variables

Conversely, replacing global variables by passing around lots of parameters places
additional burden on the main program to keep track of the parameters. Plus, we
end up cluttering up the subroutine’s parameter interface, which in turn leads to
the tight coupling problem we described earlier.

Ideally we’d like for our modules to assume more responsibilities internally so
that they are less reliant on controlling programs/modules when carrying out
their tasks. Think of it this way, if we were to compare the organization of a soft-
ware program with organizational (org) structures in an enterprise, which of the

123

234

6/3/15

INIT

ORDER_NO

CUSTOMER

CREATION_DATE

STATUS

...

A

B

NEW

CLOSED

Encapsulation and Implementation Hiding3

124

two org structures depicted in Figure 3.2 and Figure 3.3 would we want our pro-
grams to look like? In the case of the flat org structure depicted in Figure 3.2, we
have one centralized module that’s responsible for (micro)managing lots of sub-
modules. On the other hand, the tall org structure shown in Figure 3.3 is much
more balanced with higher level modules delegating responsibilities down to spe-
cialized submodules.

Figure 3.2 Example of a Flat Organizational Structure

Figure 3.3 Example of a Tall Organizational Structure

In programming, just like business, it’s important that we delegate responsibili-
ties so that our programs remain flexible. In order for that to happen, the
(sub)modules need to be smart enough to figure certain things out on their own—
and that requires data. In the sections to come, we’ll find that combining data and
behavior together within a class helps us develop modules that can attain the kind
of autonomy we’re looking for.

Lessons Learned from Procedural Programming 3.1

125

3.1.2 Case Study: A Procedural Code Library in ABAP

To better illustrate some of the procedural programming challenges noted in Sec-
tion 3.1.1, let’s consider an example. In this section, we’ll sketch out the develop-
ment of a date utility library using ABAP function modules.

If you’ve worked with function modules before, then you know that they’re
defined within the context of a function group. In some respects, function groups
bear some similarities to classes in that you can use them to define data and behav-
iors together within a self-contained unit (called a function pool). However, this
analogy breaks down when you consider the fact that you cannot load multiple
instances of a function group inside your program. This limitation makes it difficult
for developers to work with the (global) data inside of a function group since addi-
tional logic is required to partition the data into separate work areas (or instances).

Because of this shortcoming, most function module developers tend to design their
functions as stateless modules which operate on data that’s maintained elsewhere.
In this context, the term “stateless” implies that the function modules have no rec-
ollection of prior invocations and don’t maintain any sort of internal state. As a
result, function module developers need only worry about implementing the pro-
cedural logic—keeping track of the data/sessions is someone else’s problem.

Note

Whenever you call a function module from a particular function group inside your pro-
gram, the global data from the function group is loaded into the memory of the inter-
nal session of your program. Any subsequent calls to function modules within that
function group will share the same global data allocated whenever the first function
module was called.

Blame it on the BAPIs

The stateless approach to function module development increased in popularity quite a
bit in the late 1990s/early 2000s whenever SAP started introducing BAPIs (the term
“BAPI” stands for Business Application Programming Interface). At that time, SAP rolled
out loads of function modules which promoted a stateless architecture. To call these
BAPIs, one would generally have to define a slew of (global) variables that would be
used to process BAPI calls. This is illustrated with the commonly used BAPI_USER_GET_
DETAIL used to read user details. In the function signature shown in Figure 3.4, you can
see that there’s quite a bit of data about a user that has to be maintained outside of the
function module. It’s also interesting to note that the same variables would be needed
to perform other operations on users such as create, change, and so forth.

Encapsulation and Implementation Hiding3

126

Figure 3.4 An Example of a Stateless BAPI Function

For the purposes of our date library example, we’ll build our utility functions as
stateless function modules. Within these functions, we’ll operate on a date value
represented by the SCALS_DATE structure shown in Figure 3.5. Here, though we

Lessons Learned from Procedural Programming 3.1

127

could have just as easily used the internal ABAP date (D) type, we elected to use a
structure type so that we could clearly address the individual components of a
date (e.g. month, day, or year) without using offset semantics.

Figure 3.5 Modeling the Data Used for the Date Library

The code excerpt contained in Listing 3.1 sketches out the date API in a function
group called ZDATE_API. Here, we’ve defined a handful of utility methods that can
be used to perform date calculations, format dates according to different locales,
and so forth.

FUNCTION-pool zdate_api.
FUNCTION z_add_to_date.

* Local Interface IMPORTING VALUE (iv_days) TYPE i
* CHANGING (cs_date) TYPE scals_date
...

ENDFUNCTION.
FUNCTION z_subtract_from_date.

* Local Interface IMPORTING VALUE (iv_days) TYPE i
* CHANGING (cs_date) TYPE scals_date
...

ENDFUNCTION.
FUNCTION z_get_day_name.

* Local Interface IMPORTING VALUE (is_date) TYPE scals_date
* EXPORTING ev_day TYPE string
...

ENDFUNCTION.
FUNCTION z_get_week_of_year.

* Local Interface IMPORTING VALUE (is_date) TYPE scals_date
* EXPORTING ev_week TYPE i
...

ENDFUNCTION.

Encapsulation and Implementation Hiding3

128

FUNCTION z_format_date.
* Local Interface IMPORTING VALUE (is_date) TYPE scals_date
* VALUE (iv_format) TYPE csequence
* EXPORTING ev_formatted TYPE string
...

ENDFUNCTION.

Listing 3.1 Building a Date Utility Library Using Function Modules

Within an ABAP program, we might use functions in the ZDATE_API function
group to operate on date values being evaluated as part of a data processing rou-
tine like the contrived reporting example contained in Listing 3.2. With this kind
of scenario in mind, in the upcoming sections we’ll think about how our date API
might stand up to maintenance requests that might pop up over time. This analy-
sis will set the stage for Section 3.1.3 when we begin thinking about objects.

REPORT zsome_report.
START-OF-SELECTION.

PERFORM get_data.

FORM get_data.
DATA ls_date TYPE scals_date.
DATA lt_itab TYPE STANDARD TABLE OF ...
FIELD-SYMBOLS <ls_wa> LIKE LINE OF lt_itab.

SELECT *
INTO TABLE lt_itab ...

LOOP AT lt_itab ASSIGNING <ls_wa>.
ls_date = ...

CALL FUNCTION 'Z_ADD_TO_DATE'
EXPORTING

iv_days = <ls_wa>-work_days
CHANGING

cs_date = ls_date.
...
CALL FUNCTION 'Z_SUBTRACT_FROM_DATE'

EXPORTING
iv_days = <ls_wa>-offset

CHANGING
cs_date = ls_date.

...
CALL FUNCTION 'Z_FORMAT_DATE'

EXPORTING
is_date = ls_date
iv_format = `MM/DD/YYYY`

IMPORTING
ev_formatted = lv_formatted.

Lessons Learned from Procedural Programming 3.1

129

...
ENDLOOP.

ENDFORM.

Listing 3.2 Incorporating the Date API into an ABAP Report Program

Expanding the Scope of the Date API

For the first scenario, imagine that we discover a need to expand the date API to
also keep track of time. While this seems easy enough in principle, this could
prove challenging since the structure used to model the date value doesn’t con-
tain components to capture a time stamp.

Looking at the SCALS_DATE structure in the ABAP Dictionary (in Figure 3.6), we dis-
cover that this structure cannot be enhanced/appended to. Maybe we could get
away with using the unused CONTAINER field, but this wouldn’t be obvious to devel-
opers who weren’t intimately familiar with the internal workings of our date API.

Figure 3.6 Looking at the Enhancement Category of the SCALS_DATE Structure

To implement this change correctly, we’d probably have to change the signature
of our function modules to utilize a new structure. Besides requiring a fair

Encapsulation and Implementation Hiding3

130

amount of rework within the functions themselves, this also requires that we
make wholesale changes to the programs that call them.

Though you might be saying to yourself that the choice of the SCALS_DATE struc-
ture for the date API’s data model was a poor one (and you’re right to say so),
that’s really not the issue here. The point of this demonstration is to illustrate the
fact that our date API exposes way too much information about its internal repre-
sentation. Consumers of our date API shouldn’t know (or care) whether we use
the native ABAP date type (D), a structure, or something else entirely.

By exposing this kind of information in the function signatures, we’ve effectively
coded ourselves into a corner. For better or worse, we have to stick with the
design choices we’ve made and try our best to enhance around them. With state-
less modules, this is about the best we can hope for.

Dealing with External Data Corruption

For the next scenario, imagine that you receive a defect report which indicates
that the Z_FORMAT_DATE function is producing invalid output. After much investi-
gation, you determine that the invalid output isn’t a function of the logic in Z_
FORMAT_DATE, but rather due to fact that an invalid day value has been specified in
the SCALS_DATE structure’s DAY field. Here, you discover that the invalid value is
set within the calling report program which is accessing the SCALS_DATE structure
outside of the ZDATE_API function group.

Though such errors might be easy to fix once you find them, they can be difficult
to find. Since the ZDATE_API function group doesn’t technically own the data,
there’s nothing stopping other modules from overwriting and/or corrupting the
API’s data model. In a perfect world, we’d like all accesses to the date API’s data
model to go through functions in the ZDATE_API function group so that we can
isolate them and enforce the necessary validation rules (e.g. you can’t have a date
value of 20160231). However, this is something the procedural model simply can’t
guarantee. To really enforce these rules, we need some support from the under-
lying language implementation to control access.

3.1.3 Moving Toward Objects

The ZDATE_API function group introduced in Section 3.1.2 is an example of an
abstract data type (ADT). As the name suggests, ADTs are data types which pro-

Data Abstraction with Classes 3.2

131

vide an abstraction around some entity or concept (e.g. a date). Included in this
abstraction is the data itself as well as a set of operations that can be performed on
that data.

In order for ADTs to be effective, we must keep the data and operations as close
to one another as possible. As we observed in Section 3.1.2, such cohabitation is
virtually impossible to achieve with procedural programming techniques.
Because of this divide, our date API (though admittedly contrived) was awkward
to use and quite error prone. These problems become even more pronounced as
the size and complexity of such code libraries expand.

In many ways, all of the problems we’ve considered in this section can be traced
back to one central theme: poor support for data. While it would seem obvious
that data is the foundation upon which any successful computer program runs,
the stark reality is that data takes a back seat to actions in the procedural program-
ming paradigm. As a result, procedural programs tend to decay at a much faster
pace than programs built using programming models which place a greater
emphasis on the data.

3.2 Data Abstraction with Classes

Recognizing many of the limitations outlined in Section 3.1, software researchers
developed the OOP paradigm from the ground up with a strong emphasis on data
and behavior. As you’ve already learned, classes are the vehicle that drives this
equilibrium, encapsulating data (attributes) and behavior (methods) together
inside a self-contained unit.

Encapsulation improves the organization of the code, making object-oriented
class libraries much easier to understand and use than their procedural counter-
parts. To put this into perspective, consider the clumsiness of the function mod-
ule-based date library we created in Section 3.1.2. Each time we accessed one of
the API functions, we had to pass in an externally-managed structure which con-
tained all of the date information needed to handle the request. Plus, if we
wanted to work with multiple dates, then we had to define multiple variables
and track those variables manually outside of the function group.

Let’s compare that experience with a reimagined date API built using an ABAP
Objects class. In Listing 3.3, we’ve created a class called LCL_DATE which provides

Encapsulation and Implementation Hiding3

132

the same functionality of the ZDATE_API function group. As you look over the
class definition, notice the simplification in the signature of the API methods.
Instead of passing around an SCALS_DATE structure, the date information is being
stored internally in an instance attribute called MS_DATE_INFO. Besides simplifying
the interface, this design change also allows us to get out of the business of track-
ing date information externally. Now, our date API is truly an ADT which pro-
vides a complete abstraction around a date value as opposed to a loosely associated
set of stateless function modules.

CLASS lcl_date DEFINITION.
PUBLIC SECTION.
DATA ms_date_info TYPE scals_date.
METHODS:

add IMPORTING iv_days TYPE i
RETURNING VALUE(ro_date) TYPE REF TO lcl_date,

subtract IMPORTING iv_days TYPE i
RETURNING VALUE(ro_date) TYPE REF TO lcl_date,

get_day_name RETURNING VALUE(rv_day) TYPE string,
get_week_of_year RETURNING VALUE(rv_week) TYPE i,
format IMPORTING iv_pattern TYPE csequence

RETURNING VALUE(rv_date) TYPE string.
...

ENDCLASS.

Listing 3.3 Reimagining the Date Utilities API as an ABAP Objects Class

The code excerpt contained in Listing 3.4 demonstrates how we can work with
our refactored date library. Once an LCL_DATE instance is created, we no longer
have to worry about handling the date value. Instead, we can use methods like
add() and subtract() to apply the changes in-place. From a code readability
standpoint, this is much easier to follow because the context of an operation like
add() is clearly the object referenced by lo_date.

DATA lo_date TYPE REF TO lcl_date.
DATA lv_message TYPE string.

CREATE OBJECT lo_date
EXPORTING
iv_date = '20150913'

lo_date->add(30).
lv_message = |{ lo_date->subtract(15)->format('YYYYMMDD') }|.

Listing 3.4 Working with an OO-Based API

Defining Component Visibilities 3.3

133

Ultimately, objects created in reference to encapsulated classes take on their
own identity, allowing developers to start thinking about their designs in more
conceptual terms (e.g. a date). Consumers of these classes don’t have to worry
about low-level implementation details; to the end user the LCL_DATE class is like
a black box which performs various date manipulations. We don’t have to sup-
ply the LCL_DATE class with lots of data/context/instructions; it intrinsically
knows how to do its job.

In the next section, we’ll learn how to round out ADTs like the LCL_DATE class by
closing off access to internal components such as the MS_DATE_INFO attribute.
This safeguard ensures that all operations on date values are mediated through
API methods which rigorously validate incoming requests to ensure that the
integrity of date values is maintained. As we’ll see, this approach offers several
important benefits.

3.3 Defining Component Visibilities

The term “encapsulation” refers to the idea of enclosing something inside of a
capsule. The verbal imagery associated with words like “capsule” implies that
we’re setting some kind of boundary between the internal components of a class
and the outside world. The purpose of this boundary is to protect (or hide) the
inner mechanisms of the object that are sensitive to change. Most of the time, the
most vulnerable parts of an object are its attributes since these define the object’s
state. However, in this book, we’ll look at ways to hide any design decisions that
are subject to change.

In this section, we’ll describe the ABAP Objects language constructs that you can
use to establish boundaries within your classes. Then, in the section that follows,
we’ll consider how to use these boundaries to build robust classes that can easily
be adapted to ever-changing functional requirements.

3.3.1 Working with Visibility Sections

ABAP Objects provides three visibility sections for controlling access to the com-
ponents defined within a class: the PUBLIC SECTION, the PROTECTED SECTION, and
the PRIVATE SECTION. Within a CLASS DEFINITION statement, all component dec-
larations must be defined within one of these three visibility sections. The code

Encapsulation and Implementation Hiding3

134

excerpt contained in Listing 3.5 demonstrates the syntax used to define compo-
nents within these sections.

CLASS lcl_visibility DEFINITION.
PUBLIC SECTION.
DATA x TYPE i.

PROTECTED SECTION.
DATA y TYPE i.

PRIVATE SECTION.
DATA z TYPE i.

ENDCLASS.

Listing 3.5 Working with Visibility Sections

As you might expect, components defined within the PUBLIC SECTION of a class
are accessible from any context in which the class itself is visible (i.e., anywhere
you can use the class type to declare an object reference variable). These compo-
nents make up the public interface of the class.

Components defined within the PRIVATE SECTION of a class are only accessible
from within the class itself. Note that this is more than just a mere suggestion; this
is something that’s strictly enforced by the ABAP compiler/runtime environment.
For example, the code excerpt contained in Listing 3.6 would produce a compila-
tion error because the z attribute of the LCL_VISIBILITY class is defined as a pri-
vate attribute. The only way to get our hands on z is through a method defined in
the LCL_VISIBILITY class.

DATA lo_visible TYPE REF TO lcl_visibility.
CREATE OBJECT lo_visible.
IF lo_visible->z GT 0.

...
ENDIF.

Listing 3.6 Attempting Access to Private Components of a Class

For now, we’ll defer a discussion on the PROTECTED SECTION until we have a
chance to cover inheritance in Chapter 5. For now, simply note that components
defined in the PROTECTED SECTION are only accessible within a class and its sub-
classes.

When working in the form-based view of the Class Builder tool, you can assign
components of global classes to visibility sections using the Visibility column
highlighted in Figure 3.7.

Defining Component Visibilities 3.3

135

Figure 3.7 Setting the Visibility of Components Using the Form-Based View of the
Class Builder Tool

Designing Across Multiple Dimensions

Choosing the right visibility section for a given component can be tricky, and it
requires a fair amount of thought. Here, rather than thinking about the individual
components, we need to think in terms of the class’s overall interface. If we want
to make our class simple and easy to use, then we’ll need to strip down the public
interface to just the essentials. This makes the interface less busy and therefore
easier to consume.

In general, clients of a class should be on a “need-to-know” basis. In other words,
if a client doesn’t require direct access to a component, then there’s no need for
them to even be aware of its existence. Declaring such components within the
PRIVATE SECTION of a class makes life easier for everyone: clients get to work with
a simplified interface and the owners of the class have the freedom to change/
improve the internal implementation of a class without fear of breaking existing
client code.

With this concept in mind, we’d suggest that most attributes should be defined
within the PRIVATE SECTION of a class. The primary reason for hiding attributes is
to ensure that the state of the object cannot be tampered with haphazardly. If a
client needs to update the state of an object, then they can do so through a
method defined in the PUBLIC SECTION. The advantage of this kind of indirection

Encapsulation and Implementation Hiding3

136

is that we can control the assignment of the attribute using business rules that are
defined inside the method. This eliminates a lot of the guesswork in troubleshoot-
ing data-related errors since we know that any and all changes to an attribute are
brokered through a single method. Methods that update the value of private attri-
butes are sometimes called setter (or mutator) methods. To access these values (or
formatted versions of these values), clients can invoke getter (or accessor) methods
which broker access in the other direction.

This getter/setter method approach to indirect data access is demonstrated in the
LCL_TIME class contained in Listing 3.7. Here, the state of the time object is being
represented by three private attributes called mv_hour, mv_minute, and mv_second.
Any updates to these attributes are controlled through setter methods such as
set_hour() or set_minute(). Within these methods, we’ve included logic to
ensure that the attributes remain consistent (e.g. we don’t have an hour value of
113). Clients can obtain copies of these values by calling the corresponding getter
methods (e.g. get_hour()).

CLASS lcl_time DEFINITION.
PUBLIC SECTION.
METHODS:

set_hour IMPORTING iv_hour TYPE i,
get_hour RETURNING VALUE(rv_hour) TYPE i,
set_minute IMPORTING iv_minute TYPE i,
get_minute RETURNING VALUE(rv_minute) TYPE i,
set_second IMPORTING iv_second TYPE i,
get_second RETURNING VALUE(rv_second) TYPE i.

PRIVATE SECTION.
DATA: mv_hour TYPE i,

mv_minute TYPE i,
mv_second TYPE i.

ENDCLASS.

CLASS lcl_time IMPLEMENTATION.
METHOD set_hour.
IF iv_hour BETWEEN 0 AND 23.

me->mv_hour = iv_hour.
ELSE.

"TODO: Error handling...
ENDIF.

ENDMETHOD.

METHOD get_hour.
rv_hour = me->mv_hour.

Defining Component Visibilities 3.3

137

ENDMETHOD.
...

ENDCLASS.

Listing 3.7 Working with Getter and Setter Methods

As an alternative to the getter method approach, ABAP also allows us to define
read-only attributes within a class definition. This is achieved using the READ-ONLY
addition to the DATA keyword. The code excerpt below demonstrates how we
might refactor the LCL_TIME class from Listing 3.7 to use this feature.

CLASS lcl_time DEFINITION.
PUBLIC SECTION.
DATA: mv_hour TYPE i READ-ONLY,

mv_minute TYPE i READ-ONLY,
mv_second TYPE i READ-ONLY.

...
ENDCLASS.

Listing 3.8 Defining Read-Only Attributes in a Class

While this feature can come in handy for simple classes which are primarily used
for transferring data, we’d encourage you to use this option sparingly since it
exposes the internal implementation details of your class.

3.3.2 Understanding the Friend Concept

In the previous section, we learned that components defined within the private
and protected sections of a class are not visible outside of that class (or subclasses
in the case of protected components). However, in some cases, it might be advan-
tageous to be able to grant special access to certain classes of our choosing. Such
classes are called friends of the class that grants them access.

Listing 3.9 illustrates the syntax used to create friend relationships between a
defining class CL_SOME_CLASS and its friends: C1, C2, and so on. Here, the FRIENDS
addition is added to a CLASS DEFINITION statement to declare this relationship up
front to the ABAP compiler. As you can see, we can specify multiple friend classes
after the FRIENDS addition (not to mention interfaces, which are covered in Chap-
ter 6).

CLASS cl_some_class DEFINITION FRIENDS c1 c2 i3 i4.
...

ENDCLASS.

Listing 3.9 Defining Friendship Relationships in Classes

Encapsulation and Implementation Hiding3

138

To demonstrate how friendship relationships work between classes, consider the
example code contained in Listing 3.10. Here, we have a pair of classes called
LCL_PARENT and LCL_CHILD which have entered into a friendship relationship. The
LCL_CHILD class is taking advantage of this relationship by accessing the LCL_PAR-
ENT class’s mv_credit_card_no attribute in a method called buy_toys(). Since mv_
credit_card_no is defined as a private attribute, the only way for LCL_CHILD to
access this value is through the friendship relationship. Without this addition, the
code below would produce a syntax error.

CLASS lcl_child DEFINITION DEFERRED.
CLASS lcl_parent DEFINITION FRIENDS lcl_child.

PRIVATE SECTION.
DATA mv_credit_card_no TYPE string.

ENDCLASS.

CLASS lcl_child DEFINITION.
PUBLIC SECTION.
METHODS buy_toys.

ENDCLASS.
CLASS lcl_child IMPLEMENTATION.

METHOD buy_toys.
DATA: lo_parent TYPE REF TO lcl_parent,

lo_store TYPE REF TO lcl_toy_store.
lo_parent = ...
lo_store = ...

lo_store->checkout(lo_parent->mv_credit_card_no).
ENDMETHOD.

ENDCLASS.

Listing 3.10 Bypassing Access Control Using Friends

We can achieve the same effect for global classes maintained in the form-based
view of the Class Builder tool by plugging the target friend classes on the Friends
tab as shown in Figure 3.8.

Figure 3.8 Defining Friendship Relationships Between Global Classes

Designing by Contract 3.4

139

As you begin working with friendship relationships, there are a couple of import-
ant things to consider. First of all, it’s important to note the direction and nature
of the friendship relationship. In Listing 3.10, class LCL_PARENT explicitly granted
friendship access to class LCL_CHILD. This relationship definition is not reflexive.
For example, it would not be possible for class LCL_PARENT to access the private
components of class LCL_CHILD without the LCL_CHILD class granting friendship
access to LCL_PARENT first. Secondly, notice that classes cannot arbitrarily declare
themselves friends of another class. For instance, it would not be possible for
class LCL_CHILD to surreptitiously declare itself a friend of class LCL_PARENT. If this
were the case, access control would be a waste of time since any class could
bypass this restriction by simply declaring themselves a friend of whatever class
they were trying to access.

The example shown in Listing 3.10 also introduced a new addition to the CLASS
DEFINITION statement that we have not seen before: the DEFERRED addition. In a
scenario like this, the DEFERRED addition used in the first CLASS DEFINITION state-
ment for LCL_CHILD is needed to instruct the compiler of the existence of the LCL_
CHILD class in the CLASS DEFINITION statement for the LCL_PARENT class. Without
this clause, the compiler would have complained that class LCL_CHILD was
unknown whenever we tried to establish the friendship relationship in the defi-
nition of class LCL_PARENT.

To Friend or Unfriend

Many purists argue that the use of friends should not be allowed in object-oriented lan-
guages since they bypass traditional access control mechanisms. Whether you agree
with this sentiment or not, we would recommend that you use friendship relationships
sparingly in your designs because it truly is rare that you would need to open up access
like this.

3.4 Designing by Contract

As we’ve learned, encapsulation and implementation hiding techniques can be
used to define very precise public interfaces for a class. These interfaces help to
form a contract between the developer of a class and users of that class. The con-
tract metaphor is taken from the business world, where customers enter into con-
tractual agreements with suppliers providing goods or services. In his book,
Object-Oriented Software Construction, Bertrand Meyer described how this con-

Encapsulation and Implementation Hiding3

140

cept could be adapted into object-oriented software designs in order to improve
the reliability of software components that are “...implementations meant to sat-
isfy well-understood specifications.”

In this context, objects are subject to a series of invariants (or constraints) that
specify the valid states for the object. To maintain these invariants, methods are
defined using preconditions (what must be true before the method is executed)
and postconditions (what must be true after the method is executed). In Chapter 8,
we’ll look at ways to deal with exceptions to these rules.

The primary goal when applying the Design by Contract approach in your software
designs is to produce components that deliver predictable results. The boundaries
set by the visibility sections ensure that loopholes are not introduced into the con-
tract. For instance, the date library that we first introduced in Section 3.1.2 had
many loopholes that made it possible to bypass the business rules implemented
inside the function module(s). The encapsulation techniques we applied in the
class-based reimplementation of this library eliminated these loopholes by encap-
sulating the date data as a private attribute that’s cut off from external tampering.

Client programmers using classes based on these principles know what to expect
from the class based on the provided public interface. Similarly, class developers
are free to change the underlying implementation so long as they continue to
honor the contract outlined in the public interface. Over time, the duel nature of
this relationship helps to increase trust as we accumulate reusable modules that
clients know will work.

3.5 UML Tutorial: Sequence Diagrams

So far, our study of the UML has been focused on diagrams that are used to
describe the static architecture of an object-oriented system. In this chapter, we
will introduce the first of several behavioral diagrams that are used to illustrate the
behavior of objects at runtime. The sequence diagram depicts a message sequence
chart between objects that are interacting inside a software system.

Figure 3.9 shows a simple sequence diagram that is used to illustrate a cash with-
drawal transaction in an ATM machine. A sequence diagram is essentially a graph
in two dimensions. The various objects involved in the interaction are aligned
along the horizontal axis. The vertical axis represents time. Sequence diagrams

UML Tutorial: Sequence Diagrams 3.5

141

are initiated by a request message from some kind of external source. In the
example in Figure 3.9, the external source is a user interfacing with the ATM
machine. This initial message is called a found message. In object-oriented terms,
a message is analogous to a method call. Messages are sent to objects (depicted in
the familiar object boxes seen on the object diagrams described in Chapter 2). The
dashed line protruding from underneath the object box represents the object’s
lifeline.

Figure 3.9 Sequence Diagram for Withdrawing Cash from an ATM

The intersection of a message and an object’s lifeline is depicted with a thin rect-
angular box called an activation bar. The activation bar shows when an object is
active during the interaction. Objects are activated via messages (i.e. method
calls). Messages can include parameters that help clarify the operation to be per-
formed by the object. However, it’s not a good idea to try and fully specify the

withdraw(amt: money)

Found
Message

Object
Box

Activation
Bar

dispenseCash

printReceipt

Self Call

hasFunds(acct, amt)

Return

balance

getBalance

atm: ATM
serviceBroker:

ATMServiceBroker
bank: Bank

hasFunds(acct, amt)

Message with
Parameters

balance

getBalance

Lifeline

Message

Encapsulation and Implementation Hiding3

142

method interface in a sequence diagram—that’s what a class diagram is for. Here,
we only use parameters for emphasis or clarity. Synchronous method calls can
have a return message that can also have optional parameters.

In some cases, a method might need to call other local helper methods to com-
plete its task. In this case, a self call can be illustrated by drawing a circuitous
arrow to another activation bar that is stacked on top of the current activation
bar. For example, in Figure 3.9, messages dispenseCash and printReceipt are
both represented as self calls on the atm object inside method withdraw.

Sequence diagrams are very useful for explaining complex interactions where the
order of operations is difficult to follow. One of the reasons that sequence dia-
grams are so popular is that the notation is very intuitive and easy to read. To
maintain this readability, it’s important to avoid cluttering a sequence diagram
with too many interactions. In the coming chapters, we’ll look at other types of
interaction diagrams that can be used to illustrate fine-grained behavior within an
object or more involved interactions that span multiple use cases.

3.6 Summary

In this chapter, you learned about the many advantages of applying encapsulation
and implementation hiding techniques to your class designs. Encapsulating data
and behavior in classes simplifies the way that users/clients work with classes.
Hiding the implementation details of these classes strengthens the design even
further, making classes much more resistant to change and/or data corruption.
The combination of these two design techniques helps you to design intelligent
classes that are highly self-sufficient. Such classes are easy to reuse in other con-
texts since they are loosely coupled to the outside world.

In the next chapter, we’ll examine the basic lifecycle of an object. We’ll also learn
about special methods called constructors that can be used to ensure that object
instances are always created in a valid state.

7

Contents

Introduction ... 15

PART I Introduction

1 Introduction to Object-Oriented Programming 23

1.1 The Need for a Better Abstraction ... 23
1.1.1 The Evolution of Programming Languages 24
1.1.2 Moving Towards Objects .. 25

1.2 Classes and Objects ... 26
1.2.1 What Are Objects? ... 26
1.2.2 Introducing Classes .. 27
1.2.3 Defining a Class’s Interface ... 29

1.3 Establishing Boundaries ... 30
1.3.1 An Introduction to Encapsulation and

Implementation Hiding .. 31
1.3.2 Understanding Visibility Sections 33

1.4 Reuse .. 34
1.4.1 Composition .. 34
1.4.2 Inheritance ... 34
1.4.3 Polymorphism .. 36

1.5 Object Management .. 38
1.6 UML Tutorial: Class Diagram Basics ... 38

1.6.1 What are Class Diagrams? .. 39
1.6.2 Classes ... 41
1.6.3 Attributes ... 41
1.6.4 Operations ... 42
1.6.5 Associations ... 43
1.6.6 Notes ... 44

1.7 Summary ... 45

2 Getting Started with Objects ... 47

2.1 Defining Classes .. 47
2.1.1 Creating a Class .. 48
2.1.2 Component Declarations .. 49
2.1.3 Implementing Methods .. 57

8

Contents

2.2 Working with Objects .. 59
2.2.1 Object References .. 59
2.2.2 Creating Objects ... 60
2.2.3 Object Reference Assignments ... 60
2.2.4 Accessing Instance Components 64
2.2.5 Accessing Class Components .. 67
2.2.6 Working with Events .. 68
2.2.7 Working with Functional Methods 73
2.2.8 Chaining Method Calls Together 76

2.3 Building your First Object-Oriented Program 78
2.3.1 Creating the Report Program .. 79
2.3.2 Adding in the Local Class Definition 82

2.4 Working with Global Classes .. 84
2.4.1 Understanding the Class Pool Concept 85
2.4.2 Getting Started with the Class Builder Tool 85
2.4.3 Creating Global Classes .. 86
2.4.4 Using the Form-Based Editor .. 88
2.4.5 Using the Source Code Editor ... 96

2.5 Developing Classes Using the ABAP Development Tools
in Eclipse ... 97
2.5.1 What is Eclipse? ... 97
2.5.2 Setting Up the AIE Environment 98
2.5.3 Working with the AIE Class Editor Tools 104
2.5.4 Where to Go to Find More Information about AIE 113

2.6 New Syntax Features in Release 7.40 ... 114
2.7 UML Tutorial: Object Diagrams ... 117
2.8 Summary ... 119

3 Encapsulation and Implementation Hiding 121

3.1 Lessons Learned from Procedural Programming 121
3.1.1 Decomposing the Functional Decomposition Process 122
3.1.2 Case Study: A Procedural Code Library in ABAP 125
3.1.3 Moving Toward Objects ... 130

3.2 Data Abstraction with Classes .. 131
3.3 Defining Component Visibilities ... 133

3.3.1 Working with Visibility Sections 133
3.3.2 Understanding the Friend Concept 137

3.4 Designing by Contract ... 139
3.5 UML Tutorial: Sequence Diagrams ... 140
3.6 Summary ... 142

Contents

9

4 Object Initialization and Cleanup ... 143

4.1 Understanding the Object Creation Process 143
4.2 Working with Constructors .. 148

4.2.1 Defining Constructors ... 148
4.2.2 Understanding How Constructors Work 149
4.2.3 Class Constructors .. 151

4.3 Object-Creational Patterns .. 152
4.3.1 Controlling the Instantiation Context 152
4.3.2 Implementing the Singleton Pattern 154
4.3.3 Working with Factory Methods .. 156

4.4 Garbage Collection .. 157
4.5 Tuning Performance .. 159

4.5.1 Design Considerations .. 159
4.5.2 Lazy Initialization ... 159
4.5.3 Reusing Objects ... 161
4.5.4 Making Use of Class Attributes ... 161

4.6 UML Tutorial: State Machine Diagrams ... 161
4.7 Summary ... 163

5 Inheritance and Composition .. 165

5.1 Generalization and Specialization .. 166
5.1.1 Inheritance Defined .. 166
5.1.2 Defining Inheritance Relationships in ABAP Objects 167
5.1.3 Working with Subclasses .. 173
5.1.4 Inheritance as a Living Relationship 173

5.2 Inheriting Components .. 175
5.2.1 Designing the Inheritance Interface 176
5.2.2 Visibility of Instance Components in Subclasses 178
5.2.3 Visibility of Class Components in Subclasses 179
5.2.4 Redefining Methods ... 179
5.2.5 Instance Constructors ... 182
5.2.6 Class Constructors .. 183

5.3 The Abstract and Final Keywords ... 183
5.3.1 Abstract Classes and Methods .. 183
5.3.2 Final Classes ... 188
5.3.3 Final Methods .. 189

5.4 Inheritance vs. Composition .. 191
5.5 Working with ABAP Refactoring Tools ... 194

10

Contents

5.6 UML Tutorial: Advanced Class Diagrams .. 198
5.6.1 Generalizations ... 198
5.6.2 Dependencies and Composition 198
5.6.3 Abstract Classes and Methods .. 199

5.7 Summary ... 201

6 Polymorphism ... 203

6.1 Object Reference Assignments Revisited .. 204
6.1.1 Static and Dynamic Types ... 205
6.1.2 Casting ... 207

6.2 Dynamic Method Call Binding ... 210
6.3 Interfaces .. 212

6.3.1 Interface Inheritance vs. Implementation Inheritance 213
6.3.2 Defining Interfaces ... 214
6.3.3 Implementing Interfaces ... 218
6.3.4 Working with Interfaces ... 221
6.3.5 Nesting Interfaces .. 224
6.3.6 When to Use Interfaces .. 227

6.4 UML Tutorial: Advanced Class Diagrams Part II 229
6.4.1 Interfaces ... 229
6.4.2 Providing and Required Relationships with Interfaces 230
6.4.3 Static Attributes and Methods .. 231

6.5 Summary ... 232

7 Component-Based Design Concepts .. 233

7.1 Understanding the SAP Component Model 233
7.2 The Package Concept .. 236

7.2.1 Why Do We Need Packages? ... 237
7.2.2 Introducing Packages ... 238
7.2.3 Creating Packages Using the Package Builder 240
7.2.4 Embedding Packages .. 248
7.2.5 Defining Package Interfaces .. 250
7.2.6 Creating Use Accesses .. 253
7.2.7 Performing Package Checks .. 254
7.2.8 Restriction of Client Packages ... 256

7.3 Package Design Concepts .. 258
7.4 UML Tutorial: Package Diagrams ... 260
7.5 Summary ... 262

Contents

11

8 Error Handling with Exception Classes 263

8.1 Lessons Learned from Prior Approaches ... 263
8.1.1 Lesson 1: Exception Handling Logic Gets in the Way 264
8.1.2 Lesson 2: Exception Handling Requires Varying

Amounts of Data .. 265
8.1.3 Lesson 3: The Need for Transparency 265

8.2 The Class-Based Exception Handling Concept 266
8.3 Creating Exception Classes ... 268

8.3.1 Understanding Exception Class Types 268
8.3.2 Local Exception Classes .. 270
8.3.3 Global Exception Classes .. 270
8.3.4 Defining Exception Texts .. 273
8.3.5 Mapping Exception Texts to Message Classes 274

8.4 Dealing with Exceptions .. 275
8.4.1 Handling Exceptions ... 275
8.4.2 Cleaning Up the Mess .. 280

8.5 Raising and Forwarding Exceptions .. 281
8.5.1 System-Driven Exceptions .. 282
8.5.2 Raising Exceptions Programmatically 282
8.5.3 Propagating Exceptions .. 287
8.5.4 Resumable Exceptions .. 290

8.6 UML Tutorial: Activity Diagrams .. 294
8.7 Summary ... 297

9 Unit Tests with ABAP Unit .. 299

9.1 ABAP Unit Overview ... 300
9.1.1 Unit Testing Terminology ... 300
9.1.2 Understanding How ABAP Unit Works 301
9.1.3 ABAP Unit and Production Code 301

9.2 Creating Unit Test Classes .. 301
9.2.1 Unit Test Naming Conventions ... 302
9.2.2 Test Attributes ... 303
9.2.3 Test Methods ... 304
9.2.4 Managing Fixtures .. 305
9.2.5 Test Class Generation Wizard ... 306
9.2.6 Global Test Classes ... 307

9.3 Assertions in ABAP Unit .. 307
9.3.1 Creating and Evaluating Custom Constraints 308
9.3.2 Applying Multiple Constraints .. 309

12

Contents

9.4 Managing Dependencies ... 310
9.4.1 Dependency Injection .. 311
9.4.2 Private Dependency Injection ... 311
9.4.3 Partially Implemented Interfaces 312
9.4.4 Other Sources of Information ... 312

9.5 Case Study: Creating a Unit Test in ABAP Unit 313
9.6 Executing Unit Tests .. 316

9.6.1 Integration with the ABAP Workbench 316
9.6.2 Creating Favorites in the ABAP Unit Test Browser 317
9.6.3 Integration with the Code Inspector 318

9.7 Evaluating Unit Test Results ... 319
9.8 Moving Towards Test-Driven Development 321
9.9 Behavior-Driven Development ... 322
9.10 UML Tutorial: Use Case Diagrams .. 323

9.10.1 Use Case Terminology .. 323
9.10.2 An Example Use Case ... 324
9.10.3 The Use Case Diagram .. 326
9.10.4 Use Cases for Requirements Verification 327
9.10.5 Use Cases and Testing .. 327

9.11 Summary ... 328

PART II Case Studies

10 ABAP Object Services .. 331

10.1 Introduction .. 331
10.1.1 Understanding Object-Relational Mapping (ORM)

Concepts .. 332
10.1.2 Services Overview .. 333

10.2 Working with the Persistence Service .. 335
10.2.1 Introducing Persistent Classes .. 335
10.2.2 Mapping Persistent Classes ... 340
10.2.3 Working with Persistent Objects 352

10.3 Querying Persistent Objects with the Query Service 357
10.3.1 Technical Overview .. 358
10.3.2 Building Query Expressions .. 359

10.4 Modeling Complex Entity Relationships ... 362
10.4.1 Performing Reverse Lookups .. 362
10.4.2 Navigating N-to-M Relationships 364

10.5 Transaction Handling with the Transaction Service 369
10.5.1 Technical Overview .. 369

Contents

13

10.5.2 Processing Transactions .. 370
10.5.3 Influencing the Transaction Lifecycle 374

10.6 UML Tutorial: Communication Diagrams 375
10.7 Summary ... 377

11 Business Object Development with the BOPF 379

11.1 What is the BOPF? .. 379
11.2 Anatomy of a Business Object ... 382

11.2.1 Nodes .. 383
11.2.2 Actions ... 387
11.2.3 Determinations .. 389
11.2.4 Validations ... 391
11.2.5 Associations ... 392
11.2.6 Queries .. 396

11.3 Working with the BOPF Client API .. 397
11.3.1 API Overview ... 397
11.3.2 Creating BO Instances and Node Rows 401
11.3.3 Searching for BO Instances ... 404
11.3.4 Updating and Deleting BO Node Rows 405
11.3.5 Executing Actions ... 406
11.3.6 Working with the Transaction Manager 407

11.4 Where to Go From Here .. 408
11.4.1 Looking at the Big Picture .. 409
11.4.2 Building and Enhancing BOs ... 410
11.4.3 Finding BOPF-Related Resources 410

11.5 UML Tutorial: Advanced Sequence Diagrams 411
11.5.1 Creating and Deleting Objects .. 412
11.5.2 Depicting Control Logic with Interaction Frames 412

11.6 Summary ... 413

12 Working with the SAP List Viewer ... 415

12.1 What is the SAP List Viewer? ... 415
12.2 Introducing the ALV Object Model .. 418
12.3 Developing a Reporting Framework on top of ALV 421

12.3.1 Step 1: Identifying the Key Classes and Interfaces 422
12.3.2 Step 2: Integrating the Framework into an

ABAP Report Program .. 424
12.3.3 Step 3: Creating Custom Report Feeder Classes 425

14

Contents

12.4 UML Tutorial: Advanced Activity Diagrams 430
12.5 Summary ... 432

13 Where to Go From Here .. 433

13.1 Object-Oriented Analysis and Design .. 433
13.2 Design Patterns ... 434
13.3 Reading and Writing ABAP Objects Code 435
13.4 Summary ... 436

Appendices.. 437

A Installing the Eclipse IDE .. 439
A.1 Installing the Java SDK .. 439
A.2 Installing Eclipse .. 440
A.3 Installing the ABAP Development Tools ... 442
A.4 Where to Go to Find Help ... 445

B Debugging Objects .. 447
B.1 Understanding Debugger Types ... 447
B.2 Debugging Objects Using the Classic Debugger 447

B.2.1 Displaying and Editing Attributes 447
B.2.2 Tracing Through Methods .. 449
B.2.3 Displaying Events and Event Handler Methods 450
B.2.4 Viewing Reference Assignments for an Object 451
B.2.5 Troubleshooting Class-Based Exceptions 452

B.3 Debugging Objects Using the New Debugger 455
C Bibliography ... 459
D The Authors ... 461

Index... 463

463

Index

A

ABAP development tools, 98
installation, 98

ABAP development tools for Eclipse
refactoring tools, 196

ABAP development tools in Eclipse � AIE
ABAP list viewer � ALV
ABAP object services, 331

introduction, 331
persistence service, 333
query service, 334
services overview, 333
transaction service, 335

ABAP refactoring tools, 194
ABAP runtime type services

RTTS, 398
ABAP unit

ABAP unit browser, 316–317
ABAP unit results display, 301, 308, 319
applying multiple constraints, 309
assertion, 300, 308
CL_ABAP_UNIT_ASSERT, 305, 307–310,

316, 319
CL_AUNIT_CONSTRAINT, 310
code coverage, 320
code inspector, 318
creating favorites (unit test groups), 317
duration, 304
evaluating unit test results, 319
executing unit tests, 316
FOR TESTING, 302–304, 307, 312, 315
global test classes, 307
IF_CONSTRAINT, 308–310
local test classes, 306
risk level, 303
test class generation wizard, 302, 306
unit test attributes, 303
unit test fixtures, 301, 305
unit test methods, 304
unit test naming conventions, 302

Abstract
keyword, 183
methods, 183

Abstract classes, 183
as a template, 187

Abstract data type
ADT, 130

AIE, 97
class editor tools, 104
reference materials, 113
release compatibility, 98

ALV
report example, 416
reuse function library, 417

ALV Object Model
ALV, 415
overview, 418

Attributes, 26, 50
class attributes, 50
constants, 51
instance attributes, 50
naming convention, 51

B

Behavior-driven development, 322
BOPF

action example, 406
actions, 387
associations, 392
BO organization, 382
bootstrapping the client API, 401
business object concept, 379
client API, 397
configuration service, 398
constants interface concept, 399
creating BO instances, 401
determinations, 389
introduction, 379
persistence layer, 381
queries, 396
query example, 404
related resources, 410
service manager interface, 397
transaction manager interface, 398
transaction manager usage, 407

464

Index

BOPF (Cont.)
updating BO instances, 405
validations, 391

BOPF business object
nodes, 383

Business application programming interface
BAPI, 125

Business object layer
BOL, 382

Business object processing framework
BOPF, 379

Business server pages
BSPs, 422

C

CALL METHOD statement, 64
CAST operator, 209
Casting, 207

casting operator (?=), 209
dynamic types, 206
narrowing cast, 207
narrowing cast example, 207
widening cast, 208

CATCH statement, 266
best practices for using, 278

Class Builder
defining inheritance relationships, 170
exception builder view, 270
form-based editor, 88
local definitions / implementations, 95
mapping assistant tool, 340
source code editor, 96
transaction SE24, 85

Class components
accessing, 67

CLASS DEFINITION statement
DEFERRED addition, 139

Class diagram
example, 39

Class elements
attributes, 26
methods, 26

Class interface, 29
Class pools, 85
CLASS statement

INHERITING FROM addition, 169

Class-based exception handling concept, 263
exception classes, 266
prior approaches, 263
resumable exceptions, 290
the TRY control structure, 266

Classes, 26
attributes, 50
class attributes, 50
class components, 49
comparison with type declarations, 27
component declarations, 49
constants, 51
declaration section, 47
declaring types, 56
defining a local class, 82
defining in ABAP, 47–48
encapsulation, 131
events, 56
global classes, 84
implementation section, 47
instance attributes, 50
instance components, 49
introduction, 27
methods, 52
naming conventions, 48
template analogy, 28
visibility sections, 33

Classes and objects
relationship, 28

Classic debugger tool, 447
CLEANUP statement, 266

usage example, 281
Common closure principle, 258
Common reuse principle, 258
Composition, 34, 165

defined, 193
the ‘has-a’ relationship, 192

COND statement, 285
Constructor expressions, 115

conditional operators, 115
conversion/casting operators, 115
instance operator, 115
reference operator, 115
value operator, 115

Constructors, 38
class constructor syntax, 151
defining class constructors in global classes,

151

Index

465

Constructors (Cont.)
defining class constructors in local classes, 151
defining instance constructors in global

classes, 149
defining instance constructors in local classes,

148
guaranteed initialization, 148
instance constructor behavior example, 149

CREATE OBJECT statement, 60

D

Data objects
dynamic data objects, 147
dynamic type, 206

Data transfer object
DTO, 156

Debugging objects
always create exception object option, 452

Dependency injection, 311, 313
partially implemented interfaces, 312
private dependency injection, 311

Design patterns, 434
reference materials, 434

Design-by-contract, 139
invariants, 140
postconditions, 140
preconditions, 140

Development classes, 236
Development packages, 239
Dynamic method call binding, 210
Dynamic object allocation

performance costs, 143

E

Eclipse, 97
history, 97
templates, 107

Encapsulation, 31, 121
purpose, 133
the 'least privilege' concept, 177

Events, 56
declaration syntax, 56
event handler methods, 69
example, 71

Events (Cont.)
registering event handler methods, 70
relevant abap syntax, 69
usage scenario, 68

Exception classes, 263
constructor method, 272
CX_DYNAMIC_CHECK, 269
CX_NO_CHECK, 269
CX_STATIC_CHECK, 269
defining exception texts, 273
global exception class example, 271
global exception classes, 270
mapping exception texts to message classes,

274
types, 268

Exception handling
message table parameters, 265

Exception texts, 273
as constants, 273
text parameters, 274

Exceptions
exception classes with message classes, 271
non-classed-based exceptions, 265
the exception builder tool, 270
the RAISE EXCEPTION statement, 283

Extended program check
transaction SLIN, 256

F

Factory pattern
defined, 156

Final classes, 188
Final keyword, 183
Final methods, 189
Floorplan manager

FPM, 423
FPM-BOPF integration

FBI, 381
Friend concept, 137
Function group, 125
Function modules, 125
Functional decomposition, 122
Functional methods

changes in release 7.40, 76
usage example, 73
usage in ABAP expressions, 75

466

Index

G

Garbage collection, 157
behavior of the CLEAR statement, 159

Garbage collector, 62
Gateway-BOPF integration

GBI, 381
Generic ABAP types, 56
Generic interaction layer

genIL, 382
Generic OBJECT type, 167
Global classes, 84

creating in the class builder tool, 86

I

Implementation hiding, 31, 121
hiding data, 135
setter methods, 136

Inheritance, 34, 165
'is-a' vs. 'has-a' relationship, 192
ABAP syntax, 167
as a relationship, 35
class component scope, 179
class constructor behavior example, 183
component namespace, 178
defined, 166
example, 167
generalization and specialization, 166
instance constructors, 182
interface, 176
multiple inheritance, 213
multiple inheritance 'diamond problem', 213
redefining methods, 179
relationship behavior, 173
rules, 175
single inheritance, 213
superclass vs. subclass, 166
the super pseudoreference, 178
vs. 'copy-and-paste' approach, 173
vs. composition, 191

Instance components
accessing, 64

Instantiation context
defining, 152

Interaction frame, 412
common operators, 412
example, 412
guards, 412
notation, 412
operator, 412

Interface, 212
DEFAULT addition, 220
defining a local interface, 214
defining components, 215
generic definition, 212
implementing an interface in a local class, 218
inheritance, 203
INTERFACES keyword, 218
public visibility section, 214
reference variables, 223
scope, 214
syntax, 214
vs. abstract classes, 227

L

Lazy initialization, 159
Local exception classes, 270

M

Main packages, 239
Message classes, 274
Methods, 26, 52

chained method calls, 76
defining parameters, 53
definition syntax, 52
EXCEPTIONS addition, 265
functional methods, 73
implementing, 57
method call syntax, 64
overloading, 156
parameter types, 53
pass-by-value vs. pass-by-reference, 54
signature, 55
Syntax Restrictions, 58
variable scoping rules, 58

Model-view-controller � MVC
MVC

Overview, 421

Index

467

N

Naming conventions
class naming example, 49

Narrowing casts
implicit casts for importing parameters, 212

Nested interface
component interface, 224
defining component interfaces in local inter-

faces, 224
INTERFACES statement, 224

New debugger tool, 447
displaying inheritance hierarchy, 457
layout, 455
release, 447

O

Object component selector operator, 64
Object management, 38
Object reference assignments, 204

compatible types, 204
remote control analogy, 206

Object reference variable, 59
assignments, 60
static vs. dynamic types, 205
the super pseudoreference variable, 178

Object-creational patterns, 152
Object-oriented analysis and design � OOAD
Object-oriented programming � OOP
Object-relational mapping

illustration, 333
ORM, 332

Objects, 26, 59
creating instances with CREATE OBJECT, 60
defined, 26
dynamic allocation, 143
header data, 147
identity, 133
initialization and cleanup, 143
object lifecycle, 143

OOAD
delegating Responsibilities to objects, 143
domain modeling, 166
reference materials, 433

OOP
introduction, 23
why learn OOP, 23

P

Package builder, 240
Package concept, 236

package checks, 254
package design concepts, 258
restriction of client packages, 256
use accesses, 253

Package interfaces
creating, 250

Package types
development packages, 238
main packages, 238
structure packages, 238

Packages
attributes, 243
benefits, 237
creating new packages, 240
embedding subpackages, 248
introduction, 238
package interfaces, 250

Performance tuning, 159
Persistence service, 335

accessing class agents, 352
persistent classes, 335

Persistent classes
advanced modeling concepts, 362
class agent, 338
defining one-to-one mappings, 344
how to create, 335
mapping concepts, 340
mapping types, 341
modeling entity relationships, 349
modeling n-to-m relationships, 364
modeling reverse lookups, 362

Persistent objects, 352
creating a new instance, 353
deleting, 357
reading an instance by key, 355
updating, 356

Personal object worklist
POWL, 423

468

Index

Polymorphism, 36, 203
example, 37
extensibility, 212
flexibility, 212

Procedural programming
case study, 125
lessons learned, 121

Programming languages
assembly language, 24
C, 24
evolution, 24

Q

Query service
architecture, 358
complex query example, 360
overview, 357
query expressions, 359
usage overview, 358

R

RAISE EXCEPTION statement, 282
behavior, 283
syntax, 283
usage example, 284

Refactoring
definition, 195

Refactoring assistant, 195
Release 7.40

new syntax features, 114
Resumable exceptions, 290
RESUME statement, 293

S

SAP application hierarchy, 245
application components, 245

SAP component model, 233
SAP control framework, 417
SAP gateway, 381
SAP list viewer

ALV, 415
overview, 415

SAP support portal, 245
SAP Web AS

ABAP runtime environment, 143
performance optimizations of the ABAP run-

time environment, 147
Semantic dissonance, 25
Singleton pattern

defined, 154
Software components, 233
SOLID design principals, 313
Standard classes

/BOBF/CL_FRW_FACTORY, 399
/BOBF/CL_TRA_SERV_MGR_FACTORY, 399
CL_GUI_ALV_GRID, 417
CL_OS_SYSTEM, 358
CL_SALV_HIERSEQ_TABLE, 419
CL_SALV_TABLE, 419

Standard interfaces
/BOBF/IF_FRW_ACTION, 388
/BOBF/IF_FRW_ASSOCIATION, 394
/BOBF/IF_FRW_CONFIGURATION, 398
/BOBF/IF_FRW_DETERMINATION, 389
/BOBF/IF_FRW_QUERY, 396
/BOBF/IF_FRW_VALIDATION, 392
/BOBF/IF_TRA_SERVICE_MANAGER, 397
/BOBF/IF_TRA_TRANSACTION_MGR, 398
IF_MESSAGE, 278
IF_OS_CA_INSTANCE, 340
IF_OS_CA_PERSISTENCY, 340
IF_OS_CHECK, 374
IF_OS_FACTORY, 340
IF_OS_QUERY, 358
IF_OS_QUERY_MANAGER, 358
IF_OS_STATE, 336
IF_OS_TRANSACTION, 369

Static dependencies principle, 259
Step-wise refinement, 122
Structure packages, 238
Subclasses, 173
SWITCH statement, 285

T

Test-driven development, 321
Transaction service

check agents, 374
influencing the transaction lifecycle, 374

Index

469

Transaction service (Cont.)
overview, 369
usage example, 370

TRY Statement
Generic CATCH blocks, 279

TRY statement, 276
CATCH block, 266, 276
CLEANUP block, 266
defined, 266
syntax, 266

Types, 56
using in classes, 56

U

UML
activity diagram, 294, 430
advanced class diagrams, 198
advanced sequence diagrams, 411
Class Diagram, 38
communication diagrams, 375
object diagrams, 117
package diagrams, 260
sequence diagrams, 140
state machine diagrams, 161

UML activity diagram
action, 295
activity final node, 295
decision node guards, 432
decision nodes, 432
example, 294
expansion region, 295
handler blocks, 295
initial node, 294
joins, 431
merge node, 295
notation, 294
partitions, 430
protected nodes, 295
signals, 430
sub-activities, 430
time signal, 430

UML class diagram
abstract class example, 199
composition example, 199
composition notation, 199

UML class diagram (Cont.)
depicting nested and component interfaces,

229
generalization notation for interfaces, 229
non-normative notation for abstract classes,

200
UML communication diagram

interaction diagrams, 375
notation, 375
numbering scheme, 376
relationship to collaboration diagrams, 375
relationship to object diagram, 376

UML diagrams
behavioral diagrams, 140
interaction diagrams, 142

UML package diagram
defining visibility of components, 261
dependency example, 261
dependency notation, 261
example, 261
notation, 261
packages, 260
relaxed notation, 261

UML sequence diagram
'new' message, 412
deleting an object lifeline, 412
found message, 141
messages, 141
notation, 140
object activation bar, 141
object lifelines, 141
self call, 142

UML state machine diagram
final state, 163
initial pseudostate, 161
notation, 161
states, 162
transitions, 162

UML use case diagram
example, 326
usage, 326

Unified Modeling Language, 23
unit test, 299
Use cases, 323

actor, 323–324
extension scenarios, 324
extensions, 323

470

Index

Use cases (Cont.)
guarantees, 324
main success scenario, 323–324
preconditions, 324
primary actor, 324
scope, 324

V

Visibility sections, 33, 133
private section, 133
protected section, 176
public section, 133

W

Web Dynpro ABAP, 422
Widening casts

compiler checks, 208

X

xUnit, 300

Z

ZIF_COMPARABLE interface, 215

First-hand knowledge.

We hope you have enjoyed this reading sample. You may recommend
or pass it on to others, but only in its entirety, including all pages. This
reading sample and all its parts are protected by copyright law. All usage
and exploitation rights are reserved by the author and the publisher.

James Wood is the founder and principal consultant
of Bowdark Consulting, Inc., a consulting firm speciali-
zing in technology and custom development in the SAP
landscape. Before starting Bowdark in 2006, James was
an SAP NetWeaver consultant for SAP America, Inc.
and IBM Corporation, where he was involved in many
large-scale SAP implementations. James is also an SAP
Mentor and author of several best-selling SAP titles. To
learn more about James and this book, please check
out his website at www.bowdark.com.

James Wood, Joseph Rupert

Object-Oriented Programming in
ABAP Objects
470 Pages, 2016, $69.95/€69.95
ISBN 978-1-59229-993-5

	 www.sap-press.com/3597
 © 2016 by Rheinwerk Publishing, Inc. This reading sample may be distributed free of charge. In no way must the file be alte-
red, or individual pages be removed. The use for any commercial purpose other than promoting the book is strictly prohibited.

Joseph Rupert is a senior technical consultant at
Bowdark Consulting, Inc. Before joining Bowdark, Joe
worked for several health care technology companies
building complex search engines for querying biomedi-
cal research, patient lab and clinical data.

http://sap-press.com/3597

